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Abstract 

 

Numerous models have been proposed for the analysis of convergent validity in longitudinal multimethod designs. However, exis ting multimethod models 

are limited to measurement designs with equally spaced time intervals. We present a new multirater latent state-trait model with autoregressive effects 

(MR-LST-AR) for designs with structurally different raters and individually varying time intervals. The new model is illustrated using the German Family 

Panel pairfam. By means of stochastic differential equations, we show how key coefficients of convergent and discriminant validity can be examined as  

a function of time. We compare the results from continuous and discrete time analysis and provide code to fit the new model in ctsem. Finally, the 

advantages and limitations of the model are discussed, and practical recommendations are provided.  
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A single method is often not optimal to capture the complexity and multifaceted nature of human development over time. As Burns and Haynes (2006) 

noted “a single method (rating scale) with a single source (parent) at a single time point provides little information about the time course of  the particular 

problem. The behavior could be stable, increasing, or decreasing as well as changing rapidly or slowly across time” (p. 417). To accurately assess 

construct validity in the measurement of change and stability, scholars have repeatedly stressed the need for multiple methods in longitudinal measurement 

designs (Eid & Diener, 2006).  

Today, the advantages of multimethod measurement designs are well-known (Eid & Diener, 2006; Vazire, 2010; Vazire & Mehl, 2008) and are 

increasingly applied in many areas of psychology (e.g., Burns & Haynes, 2006; Connelly & Ones, 2010; Hawkins et al., 2014; Lance et al., 2008; Zald & 

Curtis, 2005). Furthermore, numerous confirmatory factor analysis (CFA) models have been proposed for analysing longitudinal multirater designs over 

the last decades (Bohn et al., 2021; Courvoisier et al., 2008; Geiser et al. 2010; Holtmann, et al., 2017, 2020; Koch et al., 2014, 2017, 2020). In the present 

study, we concentrate on design-oriented CFA models for longitudinal multitrait-multirater (MTMR) designs (Eid et al., 2016; Koch et al., 2018).  

The basic idea of the design-oriented modeling approach is that there is no single CFA model that is suited for all measurement designs, but different 

models must be considered for different designs (see Eid et al., 2008, 2016). Eid et al. (2016) argued for the distinction between designs with structurally 

different raters vs. designs with interchangeable raters. According to Eid et al. (2016), structurally different raters do not stem from the same rater 

population and may have different perspectives on a target person. Examples of structurally different raters are self-reports, partner reports, and parent 

reports. Structurally different raters can be conceived as fixed raters because they are predetermined once a target person has been sampled. Designs 

with structurally different (or fixed) raters are typically analyzed using single-level CFA models. In contrast, interchangeable (or random) raters imply a 

multistage sampling procedure (Eid et al., 2016). Examples of interchangeable raters are multiple peers, colleagues, or friend ratings. In this article, we 

will focus on measurement designs with structurally different raters, as they are frequently used in psychology.  

One central goal of longitudinal multirater research refers to the analysis of convergent validity (rater consistency), method specificity (rater 

consistency), and discriminant validity across time. So far, several models have been presented that combine the advantages of CFA-MTMR modeling 

and latent state-trait (LST) theory (see Bohn et al., 2021; Courvoisier et al., 2008; Holtmann et al., 2020; Koch et al., 2017). In a recent study, Bohn et al. 

(2021) introduced a multirater latent state-trait model with autoregressive effects, which has been termed the MR-LST-AR model. The MR-LST-AR model 

was formulated on the principles of the revised LST-R theory (see Eid et al., 2017; Steyer et al., 2015). The basic idea of the LST-R theory is that traits 

may change due to past experiences and that “there is no person without a past” (Steyer et al., 2015, p. 71). In LST-R theory, the time-ordering of events 

and variables plays a crucial role. However, LST-R models are typically specified as discrete time models, in which time is implicitly incorporated by the 

ordering of the observed variables, and latent processes are assumed to only interact when observations occur. This means that the exact time intervals 

between observations are not explicitly considered, and the same temporal 
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coefficients or covariances apply regardless of whether time intervals are shorter or longer. 

As a result, currently available CFA-MTMR models are strictly correct only for measurement designs with equally spaced time-intervals. The assumption 

of equal time intervals is highly questionable and regularly violated in empirical applications (see Oud & Delsing, 2010; Oud & Jansen, 2000; Voelkle et 

al., 2012), especially if multiple raters are considered. Ignoring differences in unequally spaced measurement intervals may bias parameter estimates and 

may lead to incorrect conclusions (Driver, 2022). In addition, without adequately accounting for (unequally spaced) measurement intervals, it becomes 

impossible to compare, or replicate, findings from different studies with different measurement designs (cf. Voelkle et al., 2012).  

Consider, for example, a researcher who is interested in the analysis of dyadic coping over time. Dyadic coping can be defined “as couples’ mutual, 

interpersonal stress regulation and the dyadic capacity to deal with couple external stressors” (Zietlow et al., 2018). Traditionally, dyadic coping is 

measured using self-reports and other reports from the so-called anchor person and the partner, respectively. One important question in couples research 

concerns the overlap (or rater consistency) between the anchor’s and the partner’s reported dyadic coping skills over time. It stands to reason that key 

outcomes regarding dyadic coping skills strongly depend on the chosen time interval in a study. Ignoring the concrete time intervals when investigating 

the dynamics of dyadic coping over time can be problematic and may provide limited information about the rater consistency and rater specificity over 

time. By means of stochastic differential equations, continuous time methods account for individually varying time intervals in longitudinal multirater studies 

and can be used to determine the discrete time interval when the rater consistency (or other key coefficients in the model) reaches its maximum.  

The goal of the present study is 3-fold. First, we extend the conventional discrete time multimethod latent state-trait model with autoregressive effects 

(MR-LST-AR model) by Bohn et al. (2021) to measurement designs with individually varying time intervals. The new continuous time dynamic MR-LST-

AR model correctly accounts for individually varying time intervals and allows for a fine-grained analysis of rater consistency and rater specificity as a 

function of time. Second, we show how the continuous time dynamic MR-LST-AR model can be extended to MTMR designs to examine the 

interrelationship between multiple constructs at the trait and the occasion-specific level. Third, we illustrate the new approach using data from the German 

Family Panel pairfam (Brüderl et al., 2018) and discuss its advantages and limitations for the analysis of longitudinal multirater data. To facilitate the 

applicability of the new model, we provide a step-by-step tutorial and code to specify the model in R. 

 

 

1. Discrete Time Multirater Latent State Trait Models with Autoregressive Effects 

 

We start by reviewing the MR-LST-AR model by Bohn et al. (2021), as this model is quite complex and includes many other longitudinal CFA models as 

special cases, which we review in the discussion. Later, we extend the MR-LST-AR model into a more general continuous time dynamic model. For 

simplicity, we introduce the conventional MR-LST-AR model for a reduced measurement design including three indicators (𝑖 = 1, 2, 3), one construct 

(e.g., dyadic coping), two structurally different raters (𝑘 = 1, 2; self-report and other reports), and three discrete measurement occasions1 (𝑢 = 1, 2, 3). 

Figure 1 displays an MR-LST-AR model for the above measurement design. Note that Figure 1 displays the MR-LST-AR model as a path diagram of a 

confirmatory factor model.  

The basic idea of the MR-LST-AR model is to contrast structurally different raters against a reference method (or rater group) at the trait and the 

occasion-specific level following a correlated trait correlated method minus one [CTC(M-1)] modeling approach (Eid et al., 2003; 2008). According to 

Geiser et al. (2008), the choice of a reference method should be based on theoretical considerations to ease the interpretation of the results, to answer 

key research questions, or to replicate previous findings. Without loss of generality, we select the first rater group (e.g.,  self-reports, 𝑘 = 1) as the 

reference method and contrast the other report (e.g., partner report, 𝑘 ≠ 1) against this reference method. According to Figure 1, the observed 

variables 𝑌𝑖11 pertaining to the reference method (𝑘 = 1) at the first measurement occasion (𝑢 = 1) are decomposed as follows (see 𝑌111 , 𝑌211, and 

𝑌311 in Figure 1): 

 

𝑌𝑖11 = 𝛼𝑖11 + 𝑆𝑖11 + 𝜀𝑖11                                                                                                                   (1) 

𝑆𝑖11 = 𝑇𝑖11 + 𝜆𝑂𝑖11𝜁11                                                                                                                       (2) 
 

Plugging Equation (2) into Equation (1) yields 

 

𝑌𝑖11 = 𝛼𝑖11 + 𝑇𝑖11 + 𝜆𝑂𝑖11𝜁11 + 𝜀𝑖11                                                                                                             (3) 
 

where 𝛼𝑖11 is an intercept parameter (not shown in Figure 1), 𝑆𝑖11 is a latent state variable that can be decomposed into a latent trait 𝑇𝑖11 and a 

weighted latent state residual variable 𝜆𝑂𝑖11𝜁11 (see Equation (2)), and 𝜀𝑖11 is an error (residual) term. Following our example, the trait 𝑇𝑖11 

characterizes the dyadic coping trait of the target person at time 1. Note that 𝑇𝑖11has a mean of zero. The state residual 𝜁11 captures occasion-specific 

deviations from the initial trait due to situational and/or person-situation-interaction effects. The state residual is defined as a residual variable with a 

mean of zero and is uncorrelated with the latent trait. The error variables 𝜀𝑖11 capture measurement error influences. For identification purposes, it is 

common to fix the loading parameter 𝜆𝑂111  to 1 and freely estimate the variances of the latent trait and state residual variables.  

According to LST-R theory, the measurement equation of the observed variables pertaining to the reference method (𝑘 = 1)  at later measurement 

occasions (𝑢 > 1) can be written as follows: 

 

𝑌𝑖1𝑢 = 𝛼𝑖1𝑢 + 𝑆𝑖1𝑢 + 𝜀𝑖1𝑢   𝑢 > 1                                                                                                            (4) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 In this article, we use the index u to refer to a measurement occasion indiscrete time. The index t is used to refer to an exact time point in continuous time. 
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𝑆𝑖1𝑢 = 𝜆T𝑖1𝑢𝑇𝑖11 + 𝜆O𝑖1𝑢𝑂1𝑢 .  𝑢 > 1                                                                                                       (5) 
 

Inserting Equation (5) into Equation (4) yields 

 

𝑌𝑖1𝑢 = 𝛼𝑖1𝑢 + 𝜆T𝑖1𝑢𝑇𝑖11 + 𝜆O𝑖1𝑢𝑂1𝑢 + ε𝑖1𝑢, 𝑢 > 1                                                                                           (6) 
 

where 𝛼𝑖1𝑢  is an intercept, 𝜆𝑇𝑖1𝑢𝑇𝑖11 is a weighted trait factor, 𝜆𝑂𝑖1𝑢𝑂1𝑢 is a weighted occasion-specific factor, and 𝜀𝑖1𝑢  is the error term. For identification 

purposes, the trait loading 𝜆T𝑖11 is fixed to 1 for all indicators measured at time 1 and the occasion-specific loading 𝜆𝑂11𝑢  pertaining to the first indicator 

is fixed to 1. According to Equation (5), later states 𝑆𝑖1𝑢  are influenced by the trait 𝑇𝑖11 of the first time point and accumulated situational influences 𝑂1𝑢  

(see Eid et al., 2017, for details). The 𝑂1𝑢-factors are defined as follows: 

 

𝑂1𝑢 ≔ 𝛽O1𝑢𝑂1(𝑢−1) + 𝜁1𝑢      𝑢 > 1                                                                                                       (7) 

 

with 𝛽O1𝑢  denoting the autoregressive effect of an occasion-specific variable 𝑂1(𝑢−1) at the previous measurement occasion, and 𝜁1𝑢 is an occasion-

specific residual term. Note that Equation (7) simplifies to 𝑂11 = 𝜁11 if 𝑢 = 1 (i.e., first measurement occasion). High values of the autoregressive param-

eters 𝛽𝑂1𝑢  indicate strong carry-over effects of past occasions. For example, past experiences due to inner and outer influences (e.g., critical life events 

like unemployment, promotion, stress, etc.) may affect the present dyadic coping behavior of the target. The state-residual 𝜁1𝑢  captures occasion-specific 

effects that cannot be explained by previous occasions, but that is specific to the present occasion. 

 

Figure 1. Path diagram of a single-construct MR-LST-AR model. A single-construct MR-LST-AR model with indicator-specific 

trait and trait-method factors. 𝑇𝑖11: indicator-specific trait variables pertaining to the reference rater group (here: self-report); 

𝑇𝑀𝑖21: indicator-specific trait method variables pertaining to the non-reference rater group (here: other reports); 𝜁11: state-

residual variable measured at time 1; 𝑂1𝑢: occasion-specific variables; ζ𝑀21 : state-residual method variable measured at time 

1; 𝑂𝑀2𝑢: occasion-specific method variable; λT𝑖𝑘𝑢: loading pertaining to the trait variable; λTM𝑖𝑘𝑢: loading pertaining to the trait 

method variable; λO𝑖𝑘𝑢: loading pertaining to the occasion-specific variable; λOM𝑖𝑘𝑢: loading pertaining to the occasion-specific 

method factor; βO1𝑢 : autoregressive effect of the occasion-specific variable; βOM2𝑢 : autoregressive effect of the occasion-

specific method variable; ε𝑖𝑘𝑢: residual (error) variable; 𝑌𝑖𝑘𝑢: observed variable; i: indicator; k: structurally different raters (where 

k = 1 refers to the reference rater group, k ≠ 1 refers to the non-reference rater group); u: discrete measurement occasion. 
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Oftentimes the autoregressive parameters 𝛽O1𝑢 , the variances of the state residuals 𝜁1𝑢 , respectively, are constrained to equality across measurement 

occasions.  

Expressing Equation (7) and Equation (5) in terms of variances shows that a person’s state variance (or true score variance) can be decomposed into 

three parts (for all 𝑢 > 1): 

 

𝑉𝑎𝑟(𝑆𝑖1𝑢) = 𝜆T𝑖1𝑢
2 𝑉𝑎𝑟(𝑇𝑖11⏟        ) 

𝑡𝑟𝑎𝑖𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒 

+ 𝜆O𝑖1𝑢
2 𝛽O1𝑢

2 𝑉𝑎𝑟(𝑂1(𝑢−1))⏟              
𝑡𝑟𝑎𝑖𝑡 𝑢𝑛𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑙𝑒 

                                                                                              (8) 

 + 𝜆O𝑖1𝑢
2 𝑉𝑎𝑟(𝜁1𝑢)⏟          

𝑜𝑐𝑐𝑎𝑠𝑖𝑜𝑛−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐

                                                                                                                                                    

 

The first component refers to the amount of state variation that is attributable to the initial trait. According to Eid et al. (2017) a trait predictability 

coefficient (𝑃𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1) is defined as follows: 

𝑃𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1(𝑆𝑖1𝑢) ≔
𝜆T𝑖1𝑢
2 𝑉𝑎𝑟(𝑇𝑖11)

𝑉𝑎𝑟(𝑆𝑖1𝑢)
                                                                                                              (9) 

 

A high trait predictability coefficient would mean that dyadic coping is primarily attributable to trait-like effects measured at the first time point. The 

second component refers to the proportion of state variance that is not predictable by the initial trait but is attributable to accumulated effects of past 

occasion-specific influences (i.e., carry-over effects). In LST-R theory, the trait unpredictable (or dynamic) component captures trait change due to 

accumulated experiences (Eid et al., 2017). A measure of how much state variance is attributable to accumulated experiences is the trait unpredictability 

coefficient 

(𝑈𝑃𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1), which is defined for all 𝑢 > 1: 

 

𝑈𝑃𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1(𝑆𝑖1𝑢) ≔
𝜆O𝑖1𝑢
2 𝛽O1𝑢

2 𝑉𝑎𝑟(𝑂1(𝑢−1))

𝑉𝑎𝑟(𝑆𝑖1𝑢)
                                                                                                (10) 

 

A high 𝑈𝑃𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1-coefficient would suggest that there are strong carry-over effects of past occasions. The trait predictability and unpredictability 

coefficient add up to the time consistency coefficient (𝑇𝐶𝑜𝑛): 
 

𝑇𝐶𝑜𝑛(𝑆𝑖1𝑢) ≔
𝜆T𝑖1𝑢
2 𝑉𝑎𝑟(𝑇𝑖11) + 𝜆𝑂𝑖1𝑢

2 𝛽𝑂1𝑢
2 𝑉𝑎𝑟(𝑂1(𝑢−1))

𝑉𝑎𝑟(𝑆𝑖1𝑢)
                                                                              (11) 

 

The consistency coefficient 𝑇𝐶𝑜𝑛(𝑆𝑖1𝑢) represents the amount of state variance that is attributable to influences of the initial trait as well as carry-over 

effects of past occasions. The counterpart of the consistency coefficient is the occasion-specificity coefficient 𝑂𝑆(𝑆𝑖1𝑢) = 1 − 𝑇𝐶𝑜𝑛(𝑆𝑖1𝑢).The occasion-

specificity coefficient 𝑂𝑆(𝑆𝑖1𝑢) is based on the third component of state variability (see Equation 8) and characterizes unexplained occasion-specific 

influences that cannot be predicted by the initial trait nor by previous occasions. The occasion-specificity coefficient  𝑂𝑆(𝑆𝑖1𝑢) is defined as follows: 

 

 𝑂𝑆(𝑆𝑖1𝑢) ≔
𝜆O𝑖1𝑢
2 𝑉𝑎𝑟(𝜁1𝑢)

𝑉𝑎𝑟(𝑆𝑖1𝑢)
                                                                                                          (12) 

 

The occasion-specificity coefficient 𝑂𝑆(𝑆𝑖1𝑢) captures the amount of variation in dyadic coping that is attributable to occasion-specific influences (e.g., 

situational effects and/or person-situational interaction effects) at the present measurement occasion.  

Next, we turn to the measurement equations pertaining to the non-reference rater group (𝑘 ≠ 1, e.g., partner report). Following a CTC(M-1) modeling 

approach (Eid et al., 2003, 2008), the latent trait of the partner is regressed on the latent trait of the target person. Similarly, the occasion-specific variable 

(momentary dyadic coping) of the partner is regressed on the occasion-specific variable (momentary dyadic coping) of the target person. The latent linear 

regressions are represented by the factor loadings from reference trait or reference occasion-specific factors to non-reference indicators, respectively. 

The residuals of these latent linear regressions are defined as latent method factors on the trait and the occasion-specific level. The trait method factor 

represents trait-like interindividual differences in dyadic coping measured by the partner report that is not shared with the target’s self-report. A high value 

of the 𝑇𝑀𝑖𝑘1-factor indicates that the partner tends to overestimate the dyadic coping trait of the target person than one would expect based on the trait 

of the target person. Similarly, the occasion-specific method factor reflects the partner’s view on the target person’s momentary dyadic coping that is not 

shared with the target’s self-report. A high value on the 𝜁𝑀11-factor suggests that the partner tends to overestimate the momentary dyadic coping skill of 

the target than expected based on the target’s self-report. Note that the trait method factors are necessarily uncorrelated with the latent traits pertaining 

to the reference method in the MR-LST-AR model. Similarly, the occasion-specific method variables are necessarily uncorrelated with the occasion-

specific variables pertaining to the reference method in the MR-LST-AR model (see Bohn et al., 2021).  

In sum, the measurement equation of the observed variables 𝑌𝑖𝑘𝑢  can be written as follows for all 𝑘 ≠ 1, 𝑢 > 1: 
 

𝑌𝑖𝑘𝑢 = 𝛼𝑖𝑘𝑢 + 𝜆T𝑖𝑘𝑢𝑇𝑖11 + 𝜆TM𝑖𝑘𝑢𝑇𝑀𝑖𝑘1 + 𝜆O𝑖𝑘𝑢𝑂1𝑢 

+𝜆OM𝑖𝑘𝑢𝑂𝑀𝑘𝑢 + 𝜀𝑖𝑘𝑢                                                                                                                                  (13) 

𝑂1𝑢 ≔ 𝛽O1𝑢𝑂1(𝑢−1) + 𝜁1𝑢                                                                                                                                        (14) 

𝑂𝑀𝑘𝑢 ≔ 𝛽OM𝑘𝑢𝑂𝑀𝑘(𝑢−1) + 𝜁𝑀𝑘𝑢                                                                                                                            (15) 

 

where 𝛼𝑖𝑘𝑢 is an intercept, 𝜆T𝑖𝑘𝑢𝑇𝑖11 is a weighted trait factor, 𝜆TM𝑖𝑘𝑢𝑇𝑀𝑖𝑘1 is a weighted trait method factor, 𝜆O𝑖𝑘𝑢𝑂1𝑢  is a weighted occasion-specific 

factor, 𝜆OM𝑖𝑘𝑢𝑂𝑀𝑘𝑢 is a weighted occasion-specific method factor, and 𝜀𝑖𝑘𝑢  is the error term. Following the principles of LST-R theory, the occasion-

specific variables (see Equation (14)) and occasion-specific method variables (see Equation (15)) are introduced to model autoregressive effects (carry-

over effects). The occasion-specific factors 𝑂1𝑢  characterizes the target’s momentary dyadic coping assessed by the partner report that is shared with 

the target’s self-report. The occasion-specific method factors 𝑂𝑀𝑘𝑢 capture the part of the partner’s perceived momentary dyadic coping that is not 

shared with the target’s self-report.
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Due to the definition of the latent variables in the MR-LST-AR model, the variance of the observed variables can be decomposed as follows (for all 

𝑘 ≠ 1, 𝑢 > 1): 

𝑉𝑎𝑟(𝑌𝑖𝑘𝑢) = 𝜆T𝑖𝑘𝑢
2 (𝑇𝑖11) + 𝜆TM𝑖𝑘𝑢

2 𝑉𝑎𝑟(𝑇𝑀𝑖𝑘1) 

+𝜆O𝑖𝑘𝑢
2 𝛽O1𝑢

2 𝑉𝑎𝑟(𝑂1(𝑢−1))+ 𝜆O𝑖𝑘𝑢
2 𝑉𝑎𝑟(𝜁1𝑢)                                                                            (16) 

+𝜆OM𝑖𝑘𝑢
2 𝛽OM𝑘𝑢

2 𝑉𝑎𝑟(𝑂𝑀𝑘(𝑢−1))                                                                                                             

+𝜆OM𝑖𝑘𝑢
2 𝑉𝑎𝑟(𝜁𝑀𝑘𝑢

)+ 𝑉𝑎𝑟(𝜀𝑖𝑘𝑢)                                                                                                        

 

Based on Equation (16), it is possible to define several variance coefficients. To not distract readers with detailed technical information, we provide 

the formulas of these variance coefficients in Table 1 and discuss their meaning in the text. Note that we only present a selection of variance 

coefficients that allow researchers to study rater consistency at different levels. For additional variance coefficients see Bohn et al. (2021).  

Again, it is possible to define different rater consistency coefficients (as measures of convergent validity or rater congruency) based on components 

that are trait predictable (i.e., due to the initial trait), trait unpredictable (i.e., due to autoregressive effects), or occasion-specific (i.e., due to situation 

and/or person-situation interaction effects of the present time point). The rater-consistent predictability by trait1 coefficient (RConPredtrait1) represents 

the rater consistency at the trait level at the first measurement occasion. The RConPredtrait1-coefficient refers to the proportion of trait variance of the 

non-reference method at the first measurement occasion that is shared by the reference method at that occasion. A high RConPredtrait1-coefficient 

would indicate high convergent validity (rater congruency) at the trait level at the first measurement occasion. 

The rater-consistent unpredictability by trait1 coefficient (RConUPredtrait1) refers to the amount of rater consistency at the level of dynamic 

interindividual differences. A high RConUPredtrait1-coefficient suggests that anchor and partner reports overlap at the level of dynamic interindividual 

differences. This coefficient may be of particular importance whenever researchers are interested in the convergent validity (or rater congruency) at the 

dynamic (or autoregressive) level. The rater-consistent time consistency coefficient (RConTCon) is a measure of rater congruency at the level of time 

consistent interindividual differences. Time consistent interindividual differences refer to variation in the partner reports that is attributable to the initial  

trait and/or carry-over effects of past occasions. The RConTCon-coefficient is defined as the proportion of time-consistent interindividual differences in 

the partner reports that can be explained by the time-consistent effects of the reference method (self-reports). A high RConTCon-coefficient suggests 

high rater congruency at the time consistent level (i.e., interindividual differences that are predictable by the initial trait and/or by previous measurement 

occasions). The counterpart is the rater-consistent occasion-specificity coefficient (RConOS): It is defined as the proportion of occasion-specific 

interindividual differences of the partner reports that are shared with occasion-specific interindividual differences measured by the targets’ self-reports. 

Occasion-specific interindividual differences refer to situational effects and/or person-situation-interaction effects that are not attributable to the initial 

trait nor due to carry-over effects of past occasions. Finally, the reliability (Rel) is defined as the ratio of the latent state variance (or true score variance) 

divided by the total variance of an observed variable and can be computed for all observed variables. The MR-LST-AR model and the above variance 

coefficients assume equally spaced time intervals. In the case of unequally spaced time intervals, many parameters in the discrete time MR-LST-AR 

model will be biased. Next, we show how this limitation can be overcome using a continuous time modeling approach. 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The above variance coefficients refer to a selection of the discrete time coefficients discussed in the study by Bohn et al. (2021). All coefficients are defined with 

respect to the true score variance (i.e., state variance) of a manifest variable, except for the reliability coefficients. 𝑌𝑖𝑘𝑢: manifest variable; 𝑆𝑖𝑘𝑢: state variable; 𝑇𝑖11: initial 

trait; 𝑇𝑀𝑖𝑘1 : initial trait method variable; 𝜁1𝑢: latent state-residual; 𝜁𝑀𝑘𝑢: latent state-residual method variable; 𝑂1(𝑢−1): occasion-specific variable of the previous time point; 

𝑂𝑀𝑘(𝑢−1): occasion-specific method variable of the previous measurement occasion; ε𝑖𝑘𝑢: error term; λ: factor loadings;β: autoregressive effects; i: indicator; k: method; 

u: discrete measurement occasion. 

Table 1. Variance Coefficients in discrete time MR-LST-AR models.  
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2. Continuous Time Dynamic Multirater Latent State-Trait Models with Autoregressive Effects  

 

Next, we introduce a continuous time dynamic MR-LST-AR model that does not rest on the assumption of equally spaced time intervals and, thus, 

represents a generalization of its discrete time version. The new model will be termed the CT-MR-LST-AR model (continuous time dynamic multirater 

latent state-trait model with autoregressive effects). The term dynamic model refers to a model that accounts for changes in a system of variables over 

time as a function of the past. The nature of the change is typically defined as  a difference or differential equation (Voelkle et al., 2018). The key idea of 

continuous time dynamic models is that the constructs of interest (e.g., dyadic coping) and their interrelationships continue to exist between 

measurement occasions even when they are not directly observed. In contrast, discrete time models imply that the construct of interest only exists at 

the concrete measurement occasion and that time jumps in discrete and equidistant steps. We believe that the assumption of continuous time dynamic 

models is often more realistic and fits well with the revised version of the latent state-trait theory by Steyer et al. (2015). If time intervals are equidistant, 

the conventional discrete time MR-LST-AR and the continuous time version are identical in terms of model fit, as we will show later in the application. 

The extension of the MR-LST-AR model consists of four steps and has not been proposed before: First, we reformulate the MR-LST-AR model in 

state-space format (e.g., Molenaar, 2003). Second, we constrain the discrete time parameters in line with the underlying continuous time dynamic 

model (i.e., to the solution of the stochastic differential equation for a given starting point and time interval). To this end, we use the powerful machinery 

of existing continuous time modeling approaches (e.g., Oud & Jansen, 2000; Voelkle et al., 2012) and software (e.g., Driver & Voelkle, 2018). Third, we 

analytically derive the continuous time analog of the variance coefficients introduced earlier in the text. Fourth, we back-translate the continuous time 

coefficients to the corresponding discrete time coefficients for any arbitrary time interval. The back-translation allows easy communication and 

interpretation of results, for example by plotting coefficients as a function of a given time interval.  

To facilitate understanding, we focus on presenting the general idea of the new approach in the main text and use figures  to illustrate the models. 

Technical details and the exact definitions of the continuous time versions of all variance coefficients discussed above are provided in Appendix A. A  

comprehensive introduction to continuous time dynamic modeling is beyond the scope of this article. For this we refer the reader to the existing 

literature (e.g., Voelkle et al. 2012; van Montfort et al., 2018). For applied researchers who are interested in fitting CT-MR-LST-AR models to their own 

data (possibly with individually varying time intervals), we provide a short tutorial along the lines of an empirical example in the next section.  

Unlike discrete time models (e.g., the discrete time MR-LST-AR model), which focus on modeling the actual (discrete time) observations, a 

continuous time dynamic model starts with formulating a model of change (cf. McArdle,2009; Voelkle et al., 2018). The dependent variable (denoted by 

𝛈 in the following) is thus the change (denoted by d𝛈) over a given time interval (denoted by Δ𝑡). If we let the time interval go toward zero (Δ𝑡 → 0) we 

write d𝑡 instead of ∆𝑡: Note that we introduce the new index 𝑡 to refer to an exact time point in continuous time, whereas 𝑢 refers to a discrete occasion 

of measurement, as defined above. Consequently, our dependent variable is the derivative 
d𝛈(𝑡)

d𝑡
 : The boldface notation 𝛈(𝑡) indicates that 𝛈 is a 

vector of one or (typically) more variables, which may be latent with an underlying measurement model or directly observed. This vector 𝛈 is also 

referred to as the state vector.2 A basic continuous time dynamic model can thus be written as 

 

d𝛈(𝑡)

d𝑡
= 𝐀𝛈(𝑡)                                                                                                                       (17)  

 

Equation (17) is a linear differential equation, that is, the change in 𝛈 is predicted by the level of 𝛈, weighted by the so-called drift matrix 𝐀. Usually, 

however, such predictions are not perfect, and Equation (17) needs to be augmented by a stochastic error term 𝐆d𝐖(𝑡): Formally, this is written as: 

 

d𝛈(𝑡) = (𝐀𝛈(𝑡))d𝑡 + 𝐆d𝐖(𝑡)                                                                                                          (18) 

 

Equation (18) is a general stochastic differential equation that can be used to define latent state-trait models with stable traits and an autoregressive 

structure, as frequently used to study variability processes (Geiser et al., 2015). Equation (18) can be extended in various ways, for example, to cap- 

ture trends in the data. This can be achieved by adding intercepts to the equation along with expanding the state vector and constraining the elements 

in 𝐀 accordingly. For a more general expression and a more detailed explanation of the underlying mathematics, see Voelkle et al. (2012) and Driver 

Voelkle (2018). For our purposes, it suffices to note that Equation (18) can be solved for any starting point and time interval between discrete 

measurement occasions 𝑡𝑢  and 𝑡𝑢−1 (i.e., Δ𝑡𝑢 = 𝑡𝑢 − 𝑡𝑢−1). This yields the following equation (for all 𝑢 ≥ 1): 

 

𝛈𝑢 = 𝐀Δ𝑡𝑢
∗ 𝛈𝑢−1 + 𝛖𝑢 with 𝛖𝑢~N (0, 𝐐Δ𝑡𝑢

∗ )                                                                                               (19) 

 

As before 𝑢 denotes the discrete measurement occasion and 𝝊𝑢 the vector of discrete time error terms with covariance matrix QΔ𝑡𝑢
∗ . The matrix 𝐀Δ𝑡𝑢

∗  

connects the elements of the state-vector over time, containing autoregressive parameters in the main diagonal and cross-lagged parameters in the off-

diagonals. The asterisk (∗) indicates that the parameter matrices are constrained in line with the solution of the differential Equation (18). Especially for 

the error terms, these constraints are well-known but somewhat complicated. To avoid distracting readers with technical details, these are found in 

Appendix A.  

Importantly, any identified model that can be expressed in terms of Equations (18) and (19) can readily be estimated as a continuous time dynamic 

model. This also applies to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 Note, that the vector notation permits the easy extension to higher-order derivatives. Prominent examples include the damped linear oscillator (e.g., Voelkle & Oud, 

2013) or CARMA (p,q) models (e.g., Oud et al., 2018). 

 

 



 

Originally published in: Structural Equation Modeling, 30(1), 2023, p. 92 

 

the MR-LST-AR model shown in Figure 1. To this end, we represent the structural part of the model expressed in Equations (18) and (19) in Figure 2a 

in a state-space format. The measurement part of the model is displayed in Figure 2b. To display the structural part in a state-space format, we simply 

expand the state vector to 𝑝 dimensions, with 𝑝 denoting all latent variables in the MR-LST-AR model shown in Figure 1, apart from the measurement 

error terms. Hence, Figure 2a illustrates the structural part of the discrete time MR-LST-AR model (i.e., connections between the trait and occasion-

specific factors) in a state-space format. According to Figure 2a, in our example, the state vector is a vector of 𝑝 = 8 dimensions that contains all latent 

variables in the MR-LST-AR model (i.e., indicator-specific trait variables, indicator-specific trait method variables, occasion-specific variables, and 

occasion-specific method variables).  

As shown in Figure 2a, not all variables in the MR-LST- AR model change over time. Specifically, it is assumed that the latent trait and latent trait 

method variables do not change over time, as they represent time-invariant components in the model. This assumption is implemented by constraining 

the corresponding elements in 𝐀Δ𝑡𝑢
∗  to 1 (see Figure 2a). 

 

Figure 2. (a) Structural part of a single-construct MR-LST-AR model for three discrete measurement occasions. The figure displays the structural part of 

the MR-LST-AR model in a state-space format, where the autoregressive effects of the indicator-specific trait and trait method variables are fixed to 1. 

𝑇𝑖1𝑢 indicator-specific trait variables pertaining to the reference rater group (here: self-report); 𝑇𝑀𝑖𝑘𝑢 : indicator-specific trait method variables pertaining 

to the non-reference rater group (here: other reports); ζ11: state-residual variable measured at time 1; 𝑂1𝑢: occasion-specific variables; ζ𝑀21 : state-residual 

method variable measured at time 1; 𝑂𝑀2𝑢 : occasion-specific method variable; βO1𝑢 : autoregressive effect of the occasion-specific variable; βOM2𝑢 : 

autoregressive effect of the occasion-specific method variable; i: indicator; k: structurally different methods/raters (where k = 1 refers to the reference 

rater group, k ≠ 1 refers to the non-reference rater group); u: discrete measurement occasion. (b) Measurement part of a single-construct MR-LST-AR 

model for the first time point. The figure displays the measurement part of the MR-LST-AR model for the first time point, the measurement model can be 

replicated for later time points. 𝑇𝑖11 : indicator-specific trait variables pertaining to the reference rater group (here: self-report); 𝑇𝑀𝑖21 : indicator-specific trait 

method variables pertaining to the non-reference rater group (here: other reports); ζ11: state-residual variable measured at time 1; ζ𝑀21: state-residual 

method variable measured at time 1; λT𝑖𝑘1: loading pertaining to the trait variable; λTM𝑖𝑘1: loading pertaining to the trait method variable; λO𝑖𝑘1: loading 

pertaining to the occasion-specific variable; λOM𝑖𝑘1: loading pertaining to the occasion-specific method factor; ε𝑖𝑘1: residual (error) variable; 𝑌𝑖𝑘𝑢: observed 

variable; i: indicator; k: structurally different methods/raters (where k = 1 refers to the reference rater group, k ≠ 1 refers to the non-reference rater group); 

u: discrete measurement occasion. 
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However, at the occasion-specific (i.e., time-dependent) level, we allow for autoregressive effects of the reference method 𝛽O1𝑢  as well as 

autoregressive effects of the non-reference method 𝛽OM1𝑢 , which correspond to auto regressive effects in 𝐀Δ𝑡𝑢
∗  (see Figure 2a). The separation of the 

reference and non-reference methods is done at the measurement level.  

The measurement part of the model is illustrated in Figure 2b. Formally, the latent variables 𝛈(𝑡) are connected to the observed variables 𝒚(𝑡) using 

the following measurement model (see Figure 2b): 

 

𝜸(𝑡) = 𝛍 + 𝚲𝛈(𝑡) + 𝛆(𝑡)  where  𝛆(𝑡) = N(𝟎𝑞, 𝚯)                                                                                                (20) 

 

where 𝒚(𝑡) is a vector of manifest or observed variables with size 𝑞 = 6 dimensions (where 𝑞 denotes the number of manifest variables at time 𝑡), 𝛍 

represents the vector of the manifest intercepts (here containing zeros as we consider centered manifest variables), 𝚲 is a matrix containing the factor 

loadings, and 𝛆(𝑡) is a vector of residual terms with a covariance matrix 𝚯: The measurement model (see Equation 20 as well as Figure 2b) 

corresponds to the measurement part of the MR-LST-AR model displayed in Figure 1.  

Together, the model illustrated in Figures 2a and b corresponds to the discrete time MR-LST-AR model shown in Figure 1 if certain parameter 

constraints are imposed (i.e., equal loadings across time, equal error variances across time, equal state-residual variances across time, equal state-

residual method variances across time, equal autoregressive effects across time pertaining to method k). The full specification of Equations (18) and 

(20) for the MR-LST-AR model shown in Figures 2a and b is provided in Appendix A. This concludes step 1, the reformulation of the MR-LST-AR model 

in a state-space format.  

In step 2, the parameters of the CT model are constrained as shown in Appendix A. This idea is illustrated in Figure 3 in a simplified way. The 

discrete time matrix 𝐀Δ𝑡𝑢
∗  is related to the drift matrix 𝐀 via the matrix exponential equation 𝐀Δ𝑡𝑢

∗ = e𝐀Δ𝑡𝑢, which is illustrated by the box in Figure 3. 

Thus, fixing autoregressive elements in 𝐀Δ𝑡𝑢
∗  to one, corresponds to fixing the diagonal, auto effects in 𝐀 to zero.3 Note that the auto-effects pertaining 

to the reference method 𝑎22 in 𝚨 (i.e., drift matrix) correspond to the auto-regressive effects 𝛽O1𝑢  in 𝐀Δ𝑡𝑢
∗  , whereas the auto-effects pertaining to the 

non-reference method 𝑎22 in 𝚨 correspond to the auto-regressive effects 𝛽OM1𝑢  in 𝐀Δ𝑡𝑢
∗ .  

Given that this is a standard continuous time dynamic model, we can use any appropriate software to estimate the model. An example with the 

package ctsem (Driver & Voelkle, 2018; version 3.3.10) will be provided in the next section. Given the parameters of the continuous time dynamic 

model, we can now derive the continuous time variance coefficients of the MR-LST-AR model (step 3). For simplicity, we provide all formulas for the 

computation of the continuous time variance coefficients in Appendix A.  

Finally (step 4), we derive the traditional discrete time MR-LST-AR coefficients from the underlying continuous time coefficients for any arbitrary time 

interval via the constraints given in Appendix A. This will be illustrated with 

 

 

 

 

 

 

 

 

 
3 For technical reasons, the corresponding values in the drift matrix A are usually fixed to a very small negative number close to zero (e.g., −0.0001 in the present 

manuscript). 

 

 

Figure 3. Graphical illustration of the discrete time parameters underlying a continuous time process. The figure illustrates how discrete time parameters 

underly a continuous time process. The box denoted by AΔ𝑡𝑢
∗  is a matrix containing the appropriate autoregressive effects of the latent processes for an 

arbitrary time interval Δ𝑡𝑢: To fix the autoregressive effects between subsequent trait variables to 1, the corresponding values in the drift matrix were fixed 

to −0.0001. The rectangle in the middle schematically illustrates how the discrete time parameters are constrained to match the underlying continuous time 

dynamic process. Note that this representation is a simplification of how the parameters in the structural part of the discrete time model need to be 

constrained to obtain the continuous time dynamic model. The exact mathematical formulation of the model is expressed in Equation (18), respectively the 

solution of Equation (18) is provided in Equation (19). 
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empirical data in the next section (e.g., see Figures 5-8). Importantly, this only works in one direction: We can correctly estimate the underlying 

continuous time parameters and then back-translate these parameters to discrete time parameters for any time interval. In the case of unequally 

spaced time intervals, however, the discrete time parameters from the MR-LST-AR model are incorrect (because the model assumes an equally spaced 

sampling design) and there is no way to infer the underlying continuous time parameters (e.g., Hamerle et al., 1993). Only in the special case of equally 

spaced time intervals, the continuous time and the discrete time version of the MR-LST-AR model will yield identical results. In the case of unequally 

spaced time intervals, only the continuous time dynamic MR-LST-AR parameters are valid. The degree to which the parameters in the continuous time 

and the discrete time version of the model will differ in the case of unequal time intervals is an empirical question (de Haan-Rietdijk et al., 2017). 

 

 

3. Continuous Time Dynamic Multitrait-Multirater-Latent State-Trait Models 

 

To examine relationships among multiple constructs and to evaluate the discriminant validity over time, researchers need to include at least two 

constructs. Here, we extend the state-space model shown in Figure 2a to a longitudinal multitrait-multirater (MTMR) design including two constructs 

(e.g., dyadic coping and intimacy as a measure of relationship quality), two structurally different raters, and three time points. The new model will be 

termed continuous time dynamic MTMR-LST-AR model and represents a complete continuous time dynamic multitrait-multirater latent state-trait model. 

For brevity, we only illustrate the structural part of the model. The measurement part has the same structure as the model presented in Figure 2b, 

except for the fact that the measurement model is duplicated for each construct that is added to the design. Note that each construct-method-unit 

may comprise a different number of observed variables.  

According to Figure 4, the state space vector of the MTMR-LST-AR model is now a vector of 𝑝 = 14 dimensions, including all latent variables (i.e., 

five indicator-specific trait variables, five indicator-specific trait method variables, two occasion-specific variables, and two occasion-specific method 

variables). Again, it is assumed that the latent trait, as well as the latent trait method variables, are time-invariant, which is implemented by constraining 

the corresponding elements in 𝐀Δ𝑡𝑢
∗  to 1 (see Figure 4). Autoregressive and cross-lagged effects are permitted at the occasion-specific level. The 

autoregressive effects represent carry-over effects (i.e., accumulated situational effects from past occasions), whereas the cross- 

 

 

 

 

 

 

 

Figure 4. Structural part of an MTMR-LST-AR model with indicator-specific trait and trait-method variables. The figure displays the structural 

part of an MTMR-LST-AR model with indicator-specific trait and trait-method variables in a state-space format. 𝑇𝑖𝑗1𝑢: indicator-specific trait 

variables pertaining to the reference rater group (here: self-report); 𝑇𝑀𝑖𝑗𝑘𝑢 : indicator-specific trait method variables pertaining to the non-

reference rater group (here: other reports); ζ𝑗11: state-residual variable measured at time 1; 𝑂𝑗1𝑢: occasion-specific variables; ζ𝑀𝑗21: state-

residual method variable measured at time 1; 𝑂𝑀𝑗2𝑢: occasion-specific method variable; β𝑂𝑗 and γ𝑂𝑗: autoregressive effect of the occasion-

specific variable; βOM𝑗  and γOM𝑗 : autoregressive effect of the occasion-specific method variable; i: indicator; k: structurally different 

methods/raters (where k = 1 refers to the reference rater group; k ≠ 1 refers to the non-reference rater group); u: discrete measurement 

occasion. 
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lagged effects reflect how these carry-over effects transmit to other constructs. For example, past situational effects may not only affect the momentary 

dyadic coping behavior of the target person but may also influence the momentary intimacy, and vice versa. The autoregressive and cross-lagged 

effects of the occasion-specific method variables represent carry-over effects that are specific to the non-reference method (e.g., partner report) after 

correcting for the influence of the reference method (e.g., target person’s view).  

In addition, the following covariances (or correlations) between the latent variables are permissible and can be investigated.4 Correlations between 

latent traits belonging to the same construct 𝑗, but different indicators 𝑖 and 𝑖’ indicate heterogeneity among the reference method indicators. Similarly, 

correlations between the latent trait method factors belonging to the same construct 𝑗, but different indicators 𝑖 and 𝑖’ reflect heterogeneity among the 

non-reference method indicators. High correlations suggest low heterogeneity among the indicators. For a detailed discussion on how to specify 

indicator-specific effects in LST models see Geiser & Lockhart (2012). 

Correlations between latent traits belonging to different constructs 𝑗 and 𝑗’ can be interpreted as a measure of discriminant validity at the trait level. 

High correlations indicate low discriminant validity at the trait level as measured by the reference method (e.g., anchor’s self -reports). Correlations 

between latent trait method factors belonging to different constructs 𝑗 and 𝑗’ can be interpreted as a measure of partial discriminant validity (after 

correcting for the reference method) at the trait level. These correlations may also be interpreted as the generalizability of rater effects at the trait level. 

For example, high correlations would suggest that there is a general tendency that partners over- or underestimate the anchor person’s trait values with 

respect to the expected trait value given the anchor person’s self-report.  

Correlations between the state residuals pertaining to different constructs 𝑗 and 𝑗’ can be interpreted as discriminant validity at the occasion-specific 

level with respect to the reference method. High correlations suggest low discriminant validity at the occasion-specific level with respect to the reference 

method (e.g., anchor’s self-reports). Similarly, correlations between the state residual method factors can be interpreted as partial discriminant validity 

at the occasion-specific level. High correlations indicate low partial discrimination or a strong tendency that rater effects generalize across different 

constructs at the occasion-specific level. Formally, correlations between trait factors and trait method factors pertaining to different constructs 𝑗 and 𝑗’ 

are permissible. Similarly, correlations between state residuals and state method residuals pertaining to different constructs 𝑗 and 𝑗’ measured at the 

same 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4 Note that we focus on the covariances structure 𝚽𝑡0

 between the latent variables at time 1 (𝑡0 : starting point of the process) in Figure 4, as this covariance structure will 

be weighted by the matrix 𝐀Δ𝑡𝑢
∗ , and thus, become a function of time. 

 

 

Figure 5. Reliability coefficients as a function of time in the anchor model. Results refer to the continuous time MR-LST-AR model using ctsem. The upper panel refers 

to the reliability coefficients of the reference rater indicators (anchor’s self-report) and the lower panel refers to the reliability coefficients of the non-reference rater 

indicators (partner report). The x-axis denotes the time intervals (0-4). The limits of the y-axis are not adjusted to visualize the shape of the curve. 
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time point are permissible. However, these correlations are oftentimes small and close to zero in empirical applications. For parsimony, we recommend 

fixing non-significant correlations to zero in empirical applications. This can also facilitate the estimation of more complex models including multiple traits 

and multiple raters. 

 

 

4. Empirical Illustration 

 

4.1. Data and Measures 

 

In this section, we illustrate the discrete and continuous time dynamic MR-LST-AR model using data from the German Family Panel (pairfam release 

9.0; Brüderl et al., 2018). A detailed description of the data and study design can be found in Huinink et al. (2011). We used a subset of the pairfam 

data set including waves 1, 3, 5, 7, and 9. Although the average sampling interval was about two years (mean of 1.98 and standard deviation of 0.12), 

not all individuals could be assessed on the same day, creating individually varying time intervals. The minimum time interval was 1.57 years, and the 

maximum was 2.48 years (with a range of .91 years). For our illustration, we selected couples in a stable relationship, that is, couples who were present 

on all occasions of measurements. This was done because anchor and partner persons could enter or leave the study at any time point. To avoid an 

overly complicated data structure including a mixture of stable and changing raters (see Koch et al., 2020), we decided to limit our study to stable 

couples. We note, however, that including all couples in the pairfam study would have led to a more unequally spaced measurement design, 

highlighting the practical relevance of the newly proposed approach.  

In total, data from 426 couples were available on all occasions of measurement. We focused on the assessment of  dyadic coping using 12 items 

from the Dyadic Coping Questionnaire (Bodemann, 2000) included in the pairfam study. Six out of the 12 items formed the anchor scale, while the 

remaining six items formed the partner scale. Item 1-3 of the anchor scale describes the anchor’s self-reported behavior toward the partner in stressful 

situations (i.e., self- report), whereas item 4-6 of the partner scale describes the partner’s perception of the anchor’s behavior toward the partner (i.e., 

partner report). Similarly, item 1-3 of the partner scale refers to the self-reported dyadic coping of the partner, and item 4-6 of the anchor scale refers to 

the anchor’s perceived dyadic coping behavior of the partner. In addition, we used two items to assess the quality of the relationship using the subscale 

Intimacy of the Network of Relationship Inventory (NFI; Furman & Buhrmester, 1985).  

All items were measured using a 5-point rating scale (i.e., 1 = never to 5 = always) and were treated as continuous observed variables in the 

analysis. For the partner model, we used the self-reports of the partner as the reference method. The reports of the anchor person served as the non-

reference method. All scripts for preparing the data are 

 

 

 

 

 

 

 

Figure 6. Rater-consistent (un)predictability by trait1 coefficients as a function of time in the anchor model. Results refer to the continuous time MR-LST-AR model 

using ctsem. The upper panel refers to rater consistent predictability by trait 1 coefficients and the lower panel refers to the rater-consistent unpredictability by trait 1 

coefficients in the anchor model. The x-axis denotes the time intervals (0-4). The limits of the y-axis are not adjusted to visualize the shape of the curve. Note that the 

rater-consistent trait unpredictability by trait 1 coefficients at t0 represent the rater consistent occasion-specificity at t0. 
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provided on the OSF website (https://osf.io/3wuyq/?view_only=d0b2d1c975a4497bbba6e50d118dfb6a). 

 

4.2. Analysis 

 

The analysis was carried out in the following steps. First, we fitted the discrete time MR-LST-AR model to the data. This model served as a baseline 

model. Second, we fitted a continuous time dynamic MR-LST-AR model using a fixed time lag of 1. As noted earlier, in this special situation (i.e., 

if we assume that all time intervals are equal) the parameters of the continuous time dynamic model should perfectly recover the discrete time 

parameters from the baseline model. Depending on whether the assumption of equal time intervals is correct or incorrect, however, the parameter 

estimates (of both modeling approaches) will be correct or incorrect. Third, we refitted the continuous time dynamic MR-LST-AR model by taking into 

account the exact (individually varying) time intervals. To this end, we used the exact timestamps from the anchor data. Due to missing timestamps of 

the partner reports, we exclusively used the timestamps of the anchor reports. In this application, we assume that anchors and partners are assessed at 

the same 

 

Figure 7. Rater consistent time consistency and rater consistent occasion-specificity as a function of time. Results refer to the continuous time MR-LST-AR model 

using ctsem. The upper panel refers to the rater consistent time consistency coefficients and the lower panel refers to the rater consistent occasion-specificity 

coefficients. The x-axis denotes the time intervals (0-4). The limits of the y-axis are not adjusted to visualize the shape of the curve. 

Figure 8. Discriminant validity and rater generalizability as a function of time. Results refer to the continuous time MTMR-LST-AR model using ctsem. The left figure 

refers to the occasion-specific correlation between the latent state residuals pertaining to different constructs (dyadic copying and intimacy) and can be interpreted as 

time-specific discriminant validity. The right panel refers to the occasion-specific correlation between the latent state residual method variable pertaining to different 

constructs (dyadic copying and intimacy) and can be interpreted as the generalizability of rater effects at the occasion-specific level. 

https://osf.io/3wuyq/?view_only=d0b2d1c975a4497bbba6e50d118dfb6a
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time points. Note, however, that the continuous time dynamic MR-LST-

AR model does not require the timestamps to be the same across raters. 

The above procedure was repeated for the anchor (i.e., anchors’ self-

reports served as the reference method) and the partner models (i.e., 

partners’ self-reports served as the reference method). In a fourth and 

final step, we extended the discrete and continuous time dynamic MTMR-

LST-AR models by adding the intimacy items into the anchor model.  

All discrete time models were estimated using robust maximum 

likelihood estimation implemented in the package lavaan (Rosseel, 2012; 

version 0.6-7). All continuous time dynamic models were estimated using 

the package ctsem (Driver & Voelkle, 2018; version 3.4.2). Note that 

ctsem also allows researchers to estimate discrete time models. The 

code for fitting the models and calculating key variance coefficients is 

provided on the OSF website 

(https://osf.io/3wuyq/?view_only=d0b2d1c975a4497bbba6e50d118dfb6a) 

 

4.3. Results 

 

Table 2 shows the unstandardized parameter estimates in the continuous 

time dynamic models for the anchor and the partner perspective of 

dyadic coping when accounting for individually varying time intervals. 

According to the 95% credible intervals, all parameters in the models 

differ significantly from zero. To ease interpretation, we can translate the 

continuous time parameters back into discrete time for any given time 

interval (see Table 3). Importantly, the parameters in Table 2 can be 

used to compute the coefficients provided in Table 1 as a function of 

different time intervals. This feature is of great importance as researchers 

can evaluate how the reliability coefficients, as well as different types of 

rater-consistency and rater-specificity coefficients, change as a function 

of different time intervals. Figure 5 illustrates this fact by showing how the 

reliability coefficients in the anchor model change as a function of the 

time interval. According to Figure 5, the reliabilities of the self-reports 

increase marginally over time while the reliabilities of the other reports 

decrease marginally over time. Note that in our empirical example, the 

reliabilities only differ by a margin of .02 units or less.  

Figure 6 shows the rater-consistent predictability by trait 1 coefficients 

(see upper panel, RConPredtrait1 and the rater consistent 

unpredictability by trait 1 coefficients (see lower panel, 

RConUnpredtrait1) in the anchor model. The rater-consistent 

predictability by trait 1 coefficients refers to the convergent validity at the 

initial trait level. The rater consistent unpredictability by trait 1 coefficients 

represents the convergent validity at the level of accumulated situational 

effects (i.e., interindividual differences in dyadic coping that are 

attributable to dynamic or autoregressive effects).  

In our empirical application, the rater-consistent predictability by trait 1 

coefficients ranged between .16 and .20, implying that 16% to 20% of the 

true variance in the partner reports could be predicted by the initial trait 

factor measured by the anchor self-reports. This corresponds to a latent 

correlation of .40 to .45, which indicates convergent validity at the initial 

trait level. Because, by definition, the rater-consistent predictability by 

trait 1 coefficients refers to the convergent  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

validity at the initial trait level it will always be constant over time (i.e., a 

flat line in the upper panel of Figure 6). The rater-consistent 

unpredictability by trait 1 coefficients was substantially lower (see lower 

panel in Figure 6). However, the rater-consistent unpredictability by trait 1 

coefficients increased over time and ranged between .00 and .03. This  

result suggests that there is little or no convergent validity at the level of 

dynamic interindividual differences. The findings may be partly explained 

by the fact that the measurement waves in the pairfam study were 2 

years apart. An alternative explanation is that partners are not able to 

judge the dynamic changes in the anchor persons’ dyadic coping 

behavior. Note that the RConUnpredtrait1-coefficients are not defined for 

𝑡0 in discrete time LST-R models (see Table 1). In continuous time 

dynamic models, the unpredictability coefficients correspond 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Estimates refer to the parameter estimates in the continuous time dynamic 

MR-LST-AR model accounting for individually varying time intervals using the 

ctsem package. λT𝑖𝑘𝑡: trait factor loadings; λTM𝑖𝑘𝑡: trait method factor loadings; 

λO𝑖𝑘𝑡: occasion-specific factor loadings; λOM𝑖𝑘𝑡: occasion-specific method factor 

loadings; ε𝑖𝑘𝑡: measurement error variable; βO1𝑡 : auto-effect (reference method); 

βOM𝑘𝑡 : auto-effect (non-reference method); 𝑇𝑖11 : latent trait factor (indicator-

specific); 𝑇𝑀𝑖𝑘1: latent trait method factor (indicator-specific); ζ1𝑡 : latent state-

residual variable; ζ𝑀𝑘𝑡 : latent state-method residual variable; 𝐶𝑜𝑣(∙) : 

covariance; 𝑉𝑎𝑟(∙): variance; i: indicator; k: rater; t: continuous-time; 2.5% : 

lower bound of the 95%  credible interval; 97.5% : upper bound of the 95% 

credible interval. 

Table 2. Unstandardized parameter estimates of the continuous time MR-

LST-AR models for the anchor and the partner perspective.   

https://osf.io/3wuyq/?view_only=d0b2d1c975a4497bbba6e50d118dfb6a
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to the occasion-specificity at 𝑡0: Hence, from a continuous time perspective, the occasion-specificity at 𝑡0 is a special case of the unpredictability 

coefficients.  

Figure 7 illustrates the rater-consistent time consistency coefficients (upper panel in Figure 7) and the rater-consistent occasion-specific coefficients 

(lower panel in Figure 7). The rater-consistent time consistency coefficients reflect the convergent validity between raters at the level of interindividual 

differences that are predictable by previous states. In our application, the rater-consistent time consistency coefficients ranged between .11 (11% 

shared variance) and .20 (20% shared variance), revealing considerable overlap between self-reported and partner-reported dyadic coping 

skills at this level. The counterpart of rater-consistent time consistency is rater-consistent occasion-specificity. The rater-consistent occasion-specificity 

coefficients reflect the convergent validity at the level of occasion-specific interindividual differences at a specific time point. The rater-consistent 

occasion-specificity coefficients are comparably lower than the rater-consistent time consistency coefficients (see lower panel of Figure 7) and range 

between .00 and .03. These results indicate low convergent validity at the occasion-specific level. Generally speaking, because the occasion-specificity 

coefficients were consistently low and close to zero, dyadic coping seems to be a “trait-like” construct in our application.  

As discussed above, if we assume a constant time interval of one unit, the discrete time MR-LST-AR model is a special case of the continuous time 

dynamic model. Thus, both models will fit the data equally well, and it is possible to compare the results. However, when making such comparisons it is 

important to note that the discrete time model is agnostic of the time units. That is, in our example a one-unit interval in the discrete time model 

corresponds to an 

lavaan: discrete time MR-LST-AR model using the lavaan package; ctsemOMX: continuous time MR-LST-AR model accounting for individually varying time intervals 

using the ctsemOMX package; ctsem: continuous time MR-LST-AR model accounting for individually varying time intervals using the ctsem package; λT𝑖𝑘𝑢: trait factor 

loadings; λTM𝑖𝑘𝑢 : trait method factor loadings; λO𝑖𝑘𝑢 : occasion-specific factor loadings; λOM𝑖𝑘𝑢 : occasion-specific method factor loadings; ε𝑖𝑘𝑢 : measurement error 

variable; βO1𝑢: autoregressive effect (reference method); βOM𝑘𝑢: autoregressive effect (non-reference method); 𝑇𝑖11: latent trait factor (indicator-specific); 𝑇𝑀𝑖𝑘1: latent 

trait method factor (indicator-specific); ζ1𝑢: latent state-residual variable; ζ𝑀𝑘𝑢: latent state-method residual variable; 𝐶𝑜𝑣(∙): covariance; 𝑉𝑎𝑟(∙): variance; i: indicator; 

k: rater; u: discrete measurement occasion; −2 log Lik: model fit in terms of deviance; AIC: Akaike information criterion. The discrete time models fitted the data 

acceptably well, 𝑥2(431,𝑁 = 426) = 535.93, 𝑝 <  .001, CFI = .984, RMSEA = 0.024 [. 017; .030]; SRMR = 0.62  for the anchor model and 𝑥2(431, 𝑁 = 426) =
542.52, 𝑝 <  .01, CFI = .981, RMSEA = 0.025 [. 018; .031]; SRMR = 0.064 for the partner model. All manifest variables were centered and the factor loadings, error 

variances, and autoregressive effects, as well as the occasion-specific residual variances for 𝑢 > 1 were set to be equal across time in the discrete time models. 

Table 3. Unstandardized parameter estimates of the discrete and continuous time MR-LST-AR models for the anchor and the partner perspective.  
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interval of two years, thus an interval ∆𝑡= 2 in the continuous time dynamic model. Table 3 shows the unstandardized parameter estimates in the 

discrete and continuous time dynamic MR-LST-AR models for the anchor and the partner perspective, using three different R packages. The second 

and fifth columns refer to the discrete time models using lavaan. For the reasons discussed above, these results are (up to rounding errors) identical to 

the results of the corresponding continuous time dynamic model when using a time interval of 2. This was verified by using the package ctsemOMX 

(Driver et al., 2017). Since the results were identical, we do not repeat them, but refer to the second and fifth columns as “lavaan & ctsemOMX (∆𝑡= 2)” 
in Table 3 (the separate results are provided in the Supplemental Material). The remaining columns in Table 3 (columns 3, 4, 6, and 7) show the results 

of continuous time dynamic models when properly accounting for individually varying time intervals. According to Table 3, the results of the discrete time 

and continuous time dynamic models when accounting for individually different time intervals are very similar, especially for the anchor model. 

Next, the MTMR-LST-AR models were fitted to the data to study the relationship between dyadic coping and intimacy. The discrete time MTMR-

LST-AR model fitted the data acceptably well, 𝑥2(1200, 𝑁 = 426) = 1524.96, 𝑝 < .001, CFI =  .972, RMSEA = 0.025 [. 021; .029]; SRMR = 0.072. 

The continuous time dynamic model fitted the data equally well. Table B1 in the Appendix summarizes the unstandardized parameter estimates in the 

discrete and the continuous time dynamic MTMR-LST-AR model. Again, when choosing the same time interval (∆𝑡= 2) , the discrete and continuous 

time dynamic MTMR-LST-AR model provides similar results. Interestingly, the new version of the ctsem package allows researchers to compute even 

complex models, like the MTMR-LST-AR model, in a reasonable time (here: < 2 min). Table B2 provides the covariances and correlations among the 

latent variables in the continuous time dynamic MTMR-LST-AR model.  

Again, based on the parameters in the continuous time dynamic model, it is possible to compute the correlations between the latent factors in the 

CT-MTMR-LST-AR as a function of the time interval. According to Figure 8, the correlations between the occasion-specific residual variables (see left 

panel) increase with larger time intervals, indicating the discriminant validity at the occasion-specific level decreases. However, the correlation between 

the occasion-specific method variables (see right panel) first decreases and then increases with increased time intervals. 

 

4.4. Discussion of the Empirical Illustration 

 

The results of our application suggest that dyadic coping in romantic couples can be conceived as a trait-like construct. The trait predictability 

coefficients were relatively large and the trait unpredictability coefficients were rather low or close to zero. The occasion-specificity coefficients 

measured by the anchors’ self-reports were below 50%, revealing high consistency of the self-reported dyadic coping across time. 

The highest convergent validity (rater consistency coefficients) between self-reported and partner-perceived dyadic coping skills were found at the 

trait level measured at time 1. The rater consistency coefficients were comparably lower at the dynamic and at the occasion-specific level. The low rater 

congruency at the dynamic and at the occasion-specific level can be partially explained by the fact that the measurement intervals were ~2 years apart 

in the pairfam study. To capture dynamic and occasion-specific influences in dyadic coping, it is recommended to use shorter time intervals between 

measuring waves in the assessment of dyadic coping. It can be expected that the occasion-specific influences on dyadic coping skills will be greater in 

studies with shorter time intervals (e.g., ambulatory assessment studies or experience sampling studies).  

The results of the continuous time dynamic MTMR-LST-AR model revealed that intimacy and dyadic coping are positively correlated at the trait level 

and at the occasion-specific level. As expected, the correlations between intimacy and dyadic coping at the occasion-specific level decreases with 

increasing time intervals. The results suggest discriminant validity at both the trait and the occasion-specific level. 

 

 

5. General Discussion 

 

The analysis of convergent and discriminant validity in the measurement of change is becoming increasingly important in psychology. However, existing 

design-oriented modeling approaches assume equally spaced time intervals within and between individuals. This assumption is frequently violated in 

empirical applications, especially if multiple raters are considered. To fill this gap, we propose a continuous time dynamic multirater latent state-trait 

model with autoregressive effects that explicitly accounts for individually varying time intervals. The new model is termed the continuous time dynamic 

MR-LST-AR model and bears several advantages for complex longitudinal multimethod (or multirater) analyses.  

First, our model is a generalization of the discrete time MR-LST-AR model by Bohn et al. (2021) to measurement designs with individually varying 

time intervals. Many other LST models (with or without autoregressive effects) could be derived as special cases from the proposed continuous time 

dynamic models. For example, the random intercept cross-lagged panel (RI-CLPM) model by Hamaker et al. (2015), the STARTS model by Kenny & 

Zautra (2001), the multimethod LST model by Courvoisier et al. (2008), as well as a single trait-multistate or multitrait-multistate models (see e.g., 

Steyer et al. 2015) represent special cases of the continuous time dynamic MTMR-LST-AR model.  

Second, the proposed continuous time dynamic models allow for a fine-grained analysis of convergent validity, discriminant validity, as well as rater-

specific effects at the trait level and at the occasion-specific level as a function of time. Researchers are now able to examine key variance coefficients 

of rater consistency (or rater specificity) at the level of interindividual differences that are (a) predictable by the initial trait, (b) attributable to dynamic 

effects, or (c) 
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attributable to occasion-specific effects. More importantly, researchers could use the proposed models to determine which rater group has the highest 

congruency (convergent validity) with the reference rater group at both the trait and the occasion-specific level and how this overlap changes over time. 

This feature is especially relevant for applied researchers who are interested in determining the optimal time interval to achieve a certain rater 

agreement in discrete time (Dormann & Griffin, 2015).  

Third, the proposed models are built on the principles of modern LST-R theory (Steyer et al., 2015, Eid et al., 2017). Following LST-R theory, the 

latent traits in the continuous-time dynamic MR-LST-AR model represent time-specific dispositions (traits) that may change as a result of past 

experiences. The autoregressive effects denote carry-over effects or accumulated situation effects due to past occasions. The latent residual variables 

denote occasion-specific effects that are neither predictable by the initial trait nor by past experiences. Overall, the presented continuous time MR-LST-

AR models complement the existing discrete time LST-AR models by combining the advantages of LST-R theory, design-oriented modeling 

approaches, and continuous time modeling approaches.  

Both discrete and continuous time dynamic modeling approaches have their strength and weaknesses. Discrete time models are advantageous if 

the measurement design comprises few and equally spaced time points and inference about underlying continuous processes is not desired. 

Oftentimes the estimation of classical (discrete time) MR-LST-AR models is not computationally demanding and usually takes only a few seconds. 

Furthermore, discrete time MR-LST-AR models can be extended to more complex measurement designs, including a combination of structurally 

different and interchangeable raters (Koch et al., 2017), categorica observed variables (Holtmann et al., 2020), or finite mixture distribution models 

(Litson et al., 2019).  

In contrast to discrete time models, continuous time dynamic MR-LST-AR models do not rely on the oftentimes unrealistic assumption of equally 

spaced multirater measurement designs or latent processes that only interact when observed. By considering the exact time point of measurement, the 

proposed model readily extends to individualized designs with possibly completely different measurement occasions across raters and across time. 

Moreover, continuous time dynamic MR-LST-AR models implicitly account for incomplete data if the missingness follows a missing (completely) at 

random mechanism (Oud & Voelkle, 2014; Voelkle, 2016). Continuous time dynamic MR-LST-AR models could also be extended to hierarchical 

formulations (see Driver & Voelkle, 2018, 2021) that allow parameters in the model to vary across individuals. Granted a sufficient amount of data, such 

an extension would allow researchers to investigate convergent validity at a within-person level. On the downside, differential continuous time dynamic 

models can be complex to set up, difficult to understand, and computationally more demanding. Moreover, just like any statistical model, the continuous 

time dynamic modeling approach assumes that the model at hand is correctly specified, that is, that the CT-MR-LST-AR model as defined via 

Equations (18) and (20) holds captures the data-generating process. In practice, this assumption can be violated, and the model may be misspecified 

resulting in biased parameter estimates and possibly wrong conclusions. Continuous time dynamic modeling offers great flexibility in extending the 

basic model employed in this article, for example to higher-order models (Oud et al., 2018) fully hierarchical models (Driver & Voelkle 2018), or 

oscillating patterns with individually varying time intervals (e.g., Voelkle & Oud, 2013). For an overview of some recent developments, see van Montfort 

et al. (2018). With the present article, we hope t to make continuous time dynamic models more accessible to readers aiming to analyze complex 

longitudinal multimethod (or multirater) data. 

 

5.1. Practical Recommendations  

 

In the case of few and equally spaced time intervals, applied researchers may be fine with discrete time MR-LST-AR models, if the measurement 

interval is meaningful. This is important because all parameter estimates will be bound to this time interval, prohibiting a comparison across other 

intervals (e.g., other studies). Following Geiser and Lockhart (2012) we recommend researchers use models with indicator-specific factors. The 

guidelines by Geiser and Lockhart (2012) can be implemented in both discrete and continuous time dynamic models presented in this article. In our 

application, we specified indicator-specific trait and indicator-specific trait method factors to account for heterogeneity in the manifest variables. 

Alternatively, latent indicator-specific factors that are orthogonal to all other latent variables in the model could be specified (see Geiser & Lockhart, 

2012).  

If the design is not equally spaced, we recommend using continuous time dynamic MR-LST-AR models. To check whether the continuous time 

dynamic model has been correctly specified (at least in classic SEM terms), researchers can compare the results of the discrete time model with those 

of the continuous time version using a time lag of one unit (cf. Table 2), although once expectations and implied covariation vary across subjects 

comparisons to a single fit value from a saturated covariance do not always give intuitive results. A prerequisite for using our continuous time dynamic 

multirater approach is that the data set contain identifying variables that denote the time stamp of the measurement. Researchers should collect the 

time stamps for each rater separately, as they may differ, and this can provide important information for estimation. In addition, we recommend starting 

with models including only a single construct (i.e., mono-construct-multimethod designs). Adding multiple constructs increases the complexity of the 

model and the time of the estimation considerably. Researchers may also consider constraining small and unimportant correlations to zero when 

specifying complex MTMR-LST-AR models. 

 

 

ORCID  

Tobias Koch  http://orcid.org/0000-0002-8143-3566  

Manuel C. Voelkle  http://orcid.org/0000-0001-5576-8103  

Charles C. Driver  http://orcid.org/0000-0002-4174-2970  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://orcid.org/0000-0002-8143-3566
http://orcid.org/0000-0001-5576-8103
http://orcid.org/0000-0002-4174-2970


 

Originally published in: Structural Equation Modeling, 30(1), 2023, p. 102 

References 

 
Bodenmann, G. (2000). Stress und Coping bei Paaren [Stress and coping in couples]. Hogrefe. 

Bohn, J., Holtmann, J., Ulitzsch, E., Koch, T., Luhmann, M., & Eid, M. (2021). Analyzing stability and change in dyadic attachment: The multi-rater latent state-trait model with 

autoregressive effects. Frontiers in Psychology, 12, 604526. https://doi.org/10.3389/fpsyg.2021.604526  

Brüderl, J., Drobnič, S., Hank, K., Huinink, J., Nauck, B., Neyer, F. J., Walper, S., Alt, P., Borschel, E., Bozoyan, C., Garrett, M., Geissler, S., Gonzalez Avilés, T., Gröpler, N., Hajek, K., 

Herzig, M., Lenke, R., Lorenz, R., Lutz, K., … Müller, B. (2018). The German Family Panel (Pairfam). GESIS Data Archive. ZA5678 Data file Version 9.1.0. 

https://doi.org/10.4232/pairfam.5678.9.1.0.  

Burns, G. L., & Haynes, S. N. (2006). Clinical psychology: Construct validation with multiple sources of information and multiple settings. In M. Eid & E. Diener (Eds.), Handbook of 

multimethod measurement in psychology (pp. 401-418). American Psychological Association. https://doi.org/10.1037/11383-001  

Connelly, B. S., & Ones, D. S. (2010). An other perspective on personality: Meta-analytic integration of observers’ accuracy and predictive validity. Psychological Bulletin, 136, 1092-1122. 

https://doi.org/10.1037/a0021212  

Courvoisier, D. S., Nussbeck, F. W., Eid, M., Geiser, C., & Cole, D. A. (2008). Analyzing the convergent and discriminant validity of states and traits: Development and applications of 

multimethod latent state-trait models. Psychological Assessment, 20, 270-280. https://doi.org/10.1037/a0012812  

de Haan-Rietdijk, S., Voelkle, M. C., Keijsers, L., & Hamaker, E. L. (2017). Discrete-vs. continuous time modeling of unequally spaced experience sampling method data. Frontiers in 

Psychology, 8, 1849. https://doi.org/10.3389/fpsyg.2017.01849  

Dormann, C., & Griffin, M. A. (2015). Optimal time lags in panel studies. Psychological Methods, 20, 489-505. https://doi.org/10.1037/met0000041  

Driver, C. C., Oud, J. H. L., & Voelkle, M. C. (2017). Continuous time structural equation modeling with r package ctsem. Journal of Statistical Software, 77, 1-35. 

https://doi.org/10.18637/jss.v077.i05  

Driver, C. C. (2022). Inference with cross-lagged effects – Problems in time and new interpretation. Manuscript submitted for publication. 

Driver, C. C., & Voelkle, M. C. (2018). Hierarchical Bayesian continuous time dynamic modeling. Psychological Methods, 23, 774-799. https://doi.org/10.1037/met0000168  

Driver, C. C., & Voelkle, M. C. (2021). Hierarchical continuous time modeling. In J. F. Rauthmann (Ed.), The handbook of personality dynamics and processes (pp. 887-908). Academic 

Press. https://doi.org/10.1016/B978-0-12-813995-0.00034-0  

Eid, M., & Diener, E. (2006). Introduction: The need for multimethod measurement in psychology. In M. Eid & E. Diener (Eds.), Handbook of multimethod measurement in psychology (pp. 

3-8). American Psychological Association. https://doi.org/10.1037/11383-001  

Eid, M., Geiser, C., & Koch, T. (2016). Measuring method effects: From traditional to design-oriented approaches. Current Directions in Psychological Science, 25, 275-280. 

https://doi.org/10.1177/0963721416649624  

Eid, M., Holtmann, J., Santangelo, P., & Ebner-Priemer, U. (2017). On the definition of latent-state-trait models with autoregressive effects. European Journal of Psychological 

Assessment, 33, 285-295. https://doi.org/10.1027/1015-5759/a000435  

Eid, M., Lischetzke, T., Nussbeck, F. W., & Trierweiler, L. I. (2003). Separating trait effects from trait-specific method effects in multi-trait-multimethod models: A multiple-indicator CT-C(M-

1) model. Psychological Methods, 8, 38-60. https://doi.org/10.1037/1082-989x.8.1.38  

Eid, M., Nussbeck, F. W., Geiser, C., Cole, D. A., Gollwitzer, M., & Lischetzke, T. (2008). Structural equation modeling of multitrait-multimethod data: Different models for different types of 

methods. Psychological Methods, 13, 230-253. https://doi.org/10.1037/a0013219  

Furman, W., & Buhrmester, D. (1985). Children’s perceptions of the personal relationships in their social networks. Developmental Psychology, 21, 1016-1024. 

https://doi.org/10.1037/0012-1649.21.6.1016  

Geiser, C., Eid, M., & Nussbeck, F. W. (2008). On the meaning of the latent variables in the CT-C (M-1) model: A comment on Maydeu-Olivares and Coffman (2006). Psychological 

Methods, 13, 49-57. https://doi.org/10.1037/1082-989X.13.1.49  

Geiser, C., Eid, M., Nussbeck, F. W., Courvoisier, D. S., & Cole, D. A. (2010). Multitrait-multimethod change modelling. Advances in Statistical Analysis, 94, 185-201. 

https://doi.org/10.1007/s10182-010-0127-0  

Geiser, C., Keller, B. T., Lockhart, G., Eid, M., Cole, D. A., & Koch, T. (2015). Distinguishing state variability from trait change in longitudinal data: The role of measurement (non) 

invariance in latent state-trait analyses. Behavior Research Methods, 47, 172-203. https://doi.org/10.3758/s13428-014-0457-z  

Geiser, C., & Lockhart, G. (2012). A comparison of four approaches to account for method effects in latent state–trait analyses. Psychological Methods, 17, 255-283. 

https://doi.org/10.1037/a0026977  

Hamaker, E. L., Kuiper, R. M., & Grasman, R. P. (2015). A critique of the cross-lagged panel model. Psychological Methods, 20, 102-116. https://doi.org/10.1037/a0038889  

Hamerle, A., Singer, H., & Nagl, W. (1993). Identification and estimation of continuous time dynamic systems with exogenous variables using panel data. Econometric Theory, 9, 283-295. 

https://doi.org/10.1017/S0266466600007544  

Hawkins, A. A., Furr, R. M., Arnold, E. M., Law, M. K., Mneimne, M., & Fleeson, W. (2014). The structure of borderline personality disorder symptoms: A multi-method, multi-sample 

examination. Personality Disorders, 5, 380-389. https://doi.org/10.1037/per0000086  

Holtmann, J., Koch, T., Bohn, J., & Eid, M. (2017). Bayesian analysis of longitudinal multitrait–multimethod data with ordinal response variables. The British Journal of Mathematical and 

Statistical Psychology, 70, 42-80. https://doi.org/10.1111/bmsp.12081  

Holtmann, J., Koch, T., Bohn, J., & Eid, M. (2020). Multimethod assessement of time-stable and time-variable interindividual differences: Introduction of a new multitrait-multimethod latent 

state-trait IRT model. European Journal of Psychological Assessment, 36, 1024-1043. https://doi.org/10.1027/1015-5759/a000577  

Huinink, J., Brüderl, J., Nauck, B., Walper, S., Castiglioni, L., & Feldhaus, M. (2011). Panel analysis of intimate relationships and family dynamics (pairfam): Conceptual framework and 

design. Zeitschrift für Familienforschung, 23, 77-101. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-376463  

Kenny, D. A., & Zautra, A. (2001). Trait-state models for longitudinal data. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 243-263). American 

Psychological Association. 

Koch, T., Eid, M., & Lochner, K. (2018). Multitrait-multimethod analysis: The psychometric foundation of CFA-MTMM model. In P. Irwing, T. Booth, & D. Hughes (Eds.), The Wiley-

Blackwell hand-book of psychometric testing (pp. 781-846). John Wiley & Sons. https://doi.org/10.1002/9781118489772.ch25  

Koch, T., Holtmann, J., Eid, M., & West, S. G. (2020). Analyzing longitudinal multirater data with changing and stable raters. Structural Equation Modeling: A Multidisciplinary Journal, 27, 

73-87. https://doi.org/10.1080/10705511.2019.1638784  

Koch, T., Schultze, M., Eid, M., & Geiser, C. (2014). A longitudinal multilevel CFA-MTMM model for interchangeable and structurally different methods. Frontiers in Psychology, 5, 311. 

https://doi.org/10.3389/fpsyg.2014.00311  

Koch, T., Schultze, M., Holtmann, J., Geiser, C., & Eid, M. (2017). A multimethod latent state-trait model for structurally different and interchangeable methods. Psychometrika, 82, 17-47. 

https://doi.org/10.1007/s11336-016-9541-x  

Lance, C. E., Hoffman, B. J., Gentry, W. A., & Baranik, L. E. (2008). Rater source factors represent important subcomponents of the criterion construct space, not rater bias. Human 

Resource Management Review, 18, 223-232. https://doi.org/10.1016/j.hrmr.2008.03.002 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

https://doi.org/10.3389/fpsyg.2021.604526
https://doi.org/10.4232/pairfam.5678.9.1.0
https://doi.org/10.1037/11383-001
https://doi.org/10.1037/a0021212
https://doi.org/10.1037/a0012812
https://doi.org/10.3389/fpsyg.2017.01849
https://doi.org/10.1037/met0000041
https://doi.org/10.18637/jss.v077.i05
https://doi.org/10.1037/met0000168
https://doi.org/10.1016/B978-0-12-813995-0.00034-0
https://doi.org/10.1037/11383-001
https://doi.org/10.1177/0963721416649624
https://doi.org/10.1027/1015-5759/a000435
https://doi.org/10.1037/1082-989x.8.1.38
https://doi.org/10.1037/a0013219
https://doi.org/10.1037/0012-1649.21.6.1016
https://doi.org/10.1037/1082-989X.13.1.49
https://doi.org/10.1007/s10182-010-0127-0
https://doi.org/10.3758/s13428-014-0457-z
https://doi.org/10.1037/a0026977
https://doi.org/10.1037/a0038889
https://doi.org/10.1017/S0266466600007544
https://doi.org/10.1037/per0000086
https://doi.org/10.1111/bmsp.12081
https://doi.org/10.1027/1015-5759/a000577
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-376463
https://doi.org/10.1002/9781118489772.ch25
https://doi.org/10.1080/10705511.2019.1638784
https://doi.org/10.3389/fpsyg.2014.00311
https://doi.org/10.1007/s11336-016-9541-x
https://doi.org/10.1016/j.hrmr.2008.03.002


 

Originally published in: Structural Equation Modeling, 30(1), 2023, p. 103 

Litson, K., Thornhill, C., Geiser, C., Burns, G. L., & Servera, M. (2019). Applying and interpreting mixture distribution latent state-trait models. Structural Equation Modeling: A 

Multidisciplinary Journal, 26, 931-947. https://doi.org/10.1080/10705511.2019.1575741  

McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577-605. 

https://doi.org/10.1146/annurev.psych.60.110707.163612  

Molenaar, P. C. M. (2003). State space techniques in structural equation modeling: Transformation of latent variables in and out of latent variable models. Retrieved from 

https://quantdev.ssri.psu.edu/sites/qdev/files/StateSpaceTechniques.pdf  

Oud, J. H., & Delsing, M. J. (2010). Continuous time modeling of panel data by means of SEM. In K. van Montfort, J. Oud, & A. Satorra (Eds .), Longitudinal research with latent variables 

(pp. 201-244). Springer. https://doi.org/10.1007/978-3-642-11760-2_7.  

Oud, J. H., & Jansen, R. A. (2000). Continuous time state space modeling of panel data by means of SEM. Psychometrika, 65, 199-215. https://doi.org/10.1007/BF02294374  

Oud, J. H., & Voelkle, M. C. (2014). Do missing values exist? Incomplete data handling in cross-national longitudinal studies by means of continuous time modeling. Quality & Quantity, 48, 

3271-3288. https://doi.org/10.1007/s11135-013-9955-9  

Oud, J. H. L., Voelkle, M. C., & Driver, C. C. (2018). SEM based CARMA time series modeling for arbitrary N. Multivariate Behavioral Research, 53, 36-56. 

https://doi.org/10.1080/00273171.2017.1383224  

Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5-12 (BETA). Journal of Statistical Software, 48, 1-36. 

Steyer, R., Mayer, A., Geiser, C., & Cole, D. A. (2015). A theory of states and traits Revised. Annual Review of Clinical Psychology, 11, 71-98. https://doi.org/10.1146/annurev-clinpsy-

032813-153719  

van Montfort, K., Oud, J H L, & Voelkle, M. C. (Eds.). (2018). Continuous time modeling in the behavioral and related sciences. Springer. 

Vazire, S. (2010). Who knows what about a person? The self–other knowledge asymmetry (SOKA) model. Journal of Personality and Social Psychology, 98, 281-300. 

https://doi.org/10.1037/a0017908  

Vazire, S., & Mehl, M. R. (2008). Knowing me, knowing you: The accuracy and unique predictive validity of self-ratings and other-ratings of daily behavior. Journal of Personality and Social 

Psychology, 95, 1202-1216. https://doi.org/10.1037/a0013314  

Voelkle, M. C. (2016). A new perspective on three old methodological issues: The role of time, missing values, and cohorts in longitudinal models of youth development. In A. C. Petersen, 

S. H. Koller, F. Motti-Stefanidi, & S. Verma (Eds.), Positive youth development in global contexts of social and economic change (pp. 128-154). Routledge. 

Voelkle, M. C., Gische, C., Driver, C. C., & Lindenberger, U. (2018). The role of time in the quest for understanding psychological mechanisms. Multivariate Behavioral Research, 53, 782-

805. https://doi.org/10.1080/00273171.2018.1496813 

Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. British Journal of Mathematical and 

Statistical Psychology, 66, 103-126. https://doi.org/10.1111/j.2044-8317.2012.02043.x  

Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological 

Methods, 17, 176-192. https://doi.org/10.1037/a0027543  

Zald, D. H., & Curtis, C. (2005). Brain imaging and related methods. In M. Eid, & E. Diener (Eds.), Handbook of multimethod measurement in psychology (pp. 173-188). American 

Psychological Association. 

Zietlow, A. L., Eckstein, M., Hernández, C., Nonnenmacher, N., Reck, C., Schaer, M., Bodenmann, G., Heinrichs, M., & Ditzen, B. (2018). Dyadic coping and its underlying neuroendocrine 

mechanisms–implications for stress regulation. Frontiers in Psychology, 9, 2600. https://doi.org/10.3389/fpsyg.2018.02600  

 

 

Appendix A: Variance Coefficients in Continuous Time MR-LST-AR Models 

 

The model-implied covariance matrix of the continuous time MR-LST-AR model discussed in Section Continuous Time Multirater Latent State-Trait 

Models with Autoregressive Effects can be expressed as follows: 

𝚺𝐲𝑡𝑢 = 𝚲(𝐀𝚫𝑡u
∗ 𝚽𝑡0(𝐀𝚫𝑡u

∗ )
T
+ 𝑸Δ𝑡𝑢)𝚲

T + 𝚯𝐲 for Δ𝑡𝑢 = 𝑡𝑢 − 𝑡0 

where 𝚺𝒚𝑡𝑢 is the model-implied covariance matrix of the observed variables, 𝚲 is the time-independent loading matrix with 𝚲T being the transposed 

loading matrix, 𝚯y is a diagonal residual (error) matrix of the manifest variables, 𝐀𝚫𝑡𝑢
∗ denotes the autoregressive-cross lagged matrix constrained to the 

underlying drift matrix via 𝐀𝚫𝑡𝑢
∗ = eAΔ𝑡𝑢 with (𝐀𝚫𝑡𝑢

∗ )
T
 being the transposed matrix, 𝚽𝑡0 is the covariance matrix of the latent variables, and 𝐐Δ𝑡𝑢denotes 

the covariance matrix constrained to underlying continuous time parameters with 𝐐Δ𝑡𝑢 = irow ((𝐀⨂𝚰 + 𝚰⨂𝐀)
−1(e(𝐀⨂𝚰+𝚰⨂𝐀)Δ𝑡𝑢 − 𝚰)row(𝐐)). Based on 

the above model-implied covariance matrix, we can now define the variance coefficients described in the main text. In the online Supplemental 

Materials, we provide a convenient R function to compute the variance coefficients in an empirical application. The reliability coefficients can be defined 

as follows: 

𝑅𝑒𝑙(𝐲𝑡𝑢):=
𝚿Δ𝑡𝑢

𝚿Δ𝑡𝑢 + 𝚯𝐲
 

where 𝚿Δ𝑡𝑢 denotes the covariance matrix of the latent variables, that is, 𝚿Δ𝑡𝑢 = 𝑨Δ𝒕𝒖
∗ 𝚽𝑡0(𝑨Δ𝑡𝑢

∗ )
T
+ 𝑸Δ𝑡𝑢. The trait predictability coefficients 

can be defined as follows: 

𝑃𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1(𝐲𝒕𝒖) : =
𝛏ref

𝚿𝚫𝒕𝒖
 

with 𝛏ref = 𝚲ξref𝚽𝑡o𝚲ξref
T  is the covariance matrix of the latent trait variables pertaining to the reference method indicators. Note that 𝚲ξref is a submatrix 

of 𝚲, where only loadings pertaining to the latent traits measured by the reference method are freely estimated and all remaining loadings are fixed to 

zero. The trait unpredictability coefficients are defined as follows: 

𝑈𝑛𝑝𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1(𝐲𝑡𝑢):=
𝐔ref

𝚿Δ𝑡𝑢
 

where 𝑼ref = 𝚿Δ𝑡𝑢 − 𝛏ref − 𝜻ref and 𝜻ref = 𝚲ζref𝐐Δ𝑡𝑢𝚲ζref
T .Again, 𝚲ζref is a submatrix of 𝚲, where all loadings are fixed to zero, except for those 

pertaining to the occasion-specific factor of the reference method. The time consistency coefficients are computed as follows: 

 

𝑇𝐶𝑜𝑛(𝐲𝒕𝒖): =  
𝛏ref + 𝐔𝐫𝐞𝐟

𝚿Δ𝒕𝒖
=
𝚿Δ𝑡𝑢−𝛇ref

𝚿Δ𝑡𝑢
 

The occasion-specificity coefficients are defined as follows: 

𝑂𝑆(𝐲𝑡𝑢):= 1 − 𝑇𝐶𝑜𝑛(𝐲𝑡𝑢) =
𝜻ref

𝚿Δ𝑡𝑢
 

Following a similar logic, the variance coefficients pertaining to the non-reference method indicators can be computed. The rater-consistent 

predictability by trait 1 coefficients can be computed as follows 

𝑅𝐶𝑜𝑛𝑈𝑃𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1(𝐲𝑡𝑢): =  
𝛏nref

𝛏nref + 𝛏𝐌nref
 

where 𝛏nref  =  𝚲ξnref𝚽𝑡0𝚲ξnref
T  and 𝛏𝐌nref =  𝚲𝛏𝐌nref𝚽𝑡0𝚲𝛏𝐌nref

T  . Again, the loadings matrices 𝚲𝛏nref and 𝚲𝛏𝐌nref are special cases of 𝚲 with certain 

elements being fixed to zero. The 𝑅𝐶𝑜𝑛𝑈𝑃𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1-coefficients are given as follows:  

𝑅𝐶𝑜𝑛𝑈𝑃𝑟𝑒𝑑𝑡𝑟𝑎𝑖𝑡1(𝐲𝑡𝑢):=  
𝐔nref

𝐔nref + 𝐔𝐌nref
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where 𝐔nref =  𝚲ζnref  (𝐀Δtu
∗ 𝚽t0(𝐀Δtu

∗ )
T
) 𝚲ζnref

T  and 𝐔𝐌nref = 𝚲ζ𝐌nref  (𝐀Δtu
∗ 𝚽t0(𝐀Δtu

∗ )
T
)𝚲ζ𝐌nref

T . Finally, the rater-consistent occasion 

specificity 

 

𝑅𝐶𝑜𝑛𝑂𝑆(𝐲𝑡𝑢):=
𝛇nref

𝛇nref + 𝛇𝐌nref
 

 

where 𝛇nref = 𝚲ζnref𝐐Δ𝑡𝑢𝚲ζnref
T   and 𝛇𝐌nref = 𝚲ζnref𝐐Δ𝑡𝑢𝚲ζnref

T . 

 

 

Appendix B: Results of the MTMR-LST-AR Models 
 

According to Table A2, the dyadic coping traits were positively correlated with the intimacy traits at the starting point of the process. The correlation 

ranged between .53 and .64 and can be interpreted as a measure of discriminant validity at 𝑡0. Similarly, the trait method factors pertaining to dyadic 

coping measures were positively correlated with the trait method factors pertaining to the intimacy measures at 𝑡0: These correlations can be interpreted 

as rater generalizability at the initial trait level. A positive correlation suggests that the partner-specific judgment on the anchor’s trait can be generalized 

across constructs when correcting for the anchor’s self-report. The correlations ranged between .52 and .63 and support the fact that partners tend to 

generalize their judgments across both constructs (dyadic coping and intimacy). A similar correlation pattern was found at the occasion-specific level. 

However, the correlations at the occasion-specific level were lower as compared to the correlations at the trait level. The correlations between the 

occasion-specific (method) factors at 𝑡0 ranged between .24 and .34. Figure 8 shows how the model-implied occasion-specific correlations change as a 

function of the time interval. 

lavaan: discrete time MTMR-LST-AR model using the lavaan package; ctsem: continuous time MTMR-LST-AR model accounting for individually varying time 

intervals using the ctsem package; λT𝑖𝑗𝑘𝑢: trait factor loadings; λTM𝑖𝑗𝑘𝑢 : trait method factor loadings; λO𝑖𝑗𝑘𝑢: occasion-specific factor loadings; λOM𝑖𝑗𝑘𝑢 : occasion-

specific method factor loadings; ε𝑖𝑗𝑘𝑢: measurement error variable; βO1𝑢: autoregressive effect (reference method); βOM𝑘𝑢: autoregressive effect (non-reference 

method); 𝑇𝑖𝑗11: latent trait factor (indicator-specific); 𝑇𝑀𝑖𝑗𝑘1: latent trait method factor (indicator-specific); ζ𝑗1𝑢: latent state-residual variable; ζ𝑀𝑗𝑘𝑢: latent state-

method residual variable; 𝐶𝑜𝑣(∙): covariance; 𝑉𝑎𝑟(∙): variance; i: indicator; j: construct; k: rater; u = discrete measurement occasion; −2 ∙ log Lik: model fit in 

terms of deviance; AIC: Akaike information criterion. 

Note. Bold coefficients in the diagonal are the variances of the latent variables. Latent covariances are provided in the upper triangular. Latent correlations are 

represented in lower triangular. Correlations denoted by 0.00 were fixed to zero based on the definition of the model. 

Table A2. Covariances and correlations between the latent variables in the continuous time MTMR-LST-AR model (anchor model) at T0. 

Table A1. Unstandardized parameter estimates of the discrete and continuous time MTMR-LST-AR model (anchor model).  


